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Abstract. The definition of a measure of strain, referred to as the bi-configuration strain tensor, centres on the
difference between the left Cauchy-Green deformation tensor and its inverse. A new measure of stress, coined
the bi-configuration stress tensor, has been defined. This measure of stress refers the traction in the current
configuration jointly to the referential and spatial configurations, that is, to an effective element of area identified
as an element of bi-configuration area. The stress and strain tensors are assumed to be constitutively related by a
finite strain form of a generalised Hooke’s law. The predictions obtained from the proposed constitutive equation
are compared with the observed mechanical behaviour of various test materials. Comparison with experiment
centres on biaxial stress measurements in various simple modes of deformation identified by way of a generalised
stress-strain relation. The predictions from the proposed constitutive theory are in good accord with the results of
experiment.
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1. Introduction

A nonlinear constitutive equation for a class of isotropic perfectly elastic solids will have
engineering relevance only if it can be shown to uniquely predict the properties characteristic
of the mechanical response of typical materials. A distinction must be made between general
predictions, which any theoretically admissible constitutive equation must yield, and specific
predictions, that is, quantitative predictions that distinguish different constitutive equations
and can be subjected to the test of experiment. Any theoretically admissible constitutive
equation must predict the Poynting effect [1,2] for a certain class of nonlinear materials. The
Poynting effect is thus an example of a general prediction. Simple equibiaxial extension is
effectively another general prediction; any theoretically admissible constitutive equation for
isotropic, perfectly elastic materials would be expected to predict stress equality for this simple
mode of deformation. Examples of constitutive equations for a class of isotropic perfectly
elastic solids that give these two general predictions, but do not yield a specific quantitative
prediction for finite deformation are the second Piola-Kirchhoff stress – Green-St.Venant
strain equation (see, for example [3, pp. 130–132]) and the Cauchy stress – Cauchy-Green
deformation equation (see, for example [3, pp. 115–118]).

The present discussion is concerned with a constitutive stress-finite-strain equation that
yields quantitative predictions at finite strain, as well as with the comparison of these pre-
dictions with experiment. The constitutive equation associates a new measure of stress to a
measure of finite strain. Discussion of the properties of the proposed constitutive equation
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centres on the use of two parameters based on Lode’s [4] parameter. These are the Lode stress
parameter, which yields predictions that distinguish between different measures of stress, and
the Lode strain parameter, which yields predictions that identify the new measure of strain as
the only measure of finite strain compatible with the new measure of stress. When expressed in
deviatoric form, the constitutive equation establishes equality between the Lode parameters,
referred to as the Lode relation. Three simple modes of deformation are characterised by
particular values of the Lode parameters: pure shear, uniaxial extension, and equi-biaxial
extension. For two of these simple modes of deformation, use of the Lode parameters identifies
two quantitative predictions which can be subjected to test using biaxial stress measurements.
The constitutive equation predicts the Poynting [1,2] effect.

The discussion is restricted to isotropic perfectly elastic solids, and does not account for
thermodynamic restrictions. The proposed constitutive equation is purely mechanical. Fur-
thermore, no attempt is made to take into account sub-continuum, that is the micromechanics
of the material. It is, however, this latter aspect of the mechanical properties of materials that
has motivated the attempt to develop a constitutive equation whose material coefficients may
be tractable to analysis within the general field of the micromechanics of polymeric solids.
For this to be possible, the material coefficients must be fundamental physical properties of
the material. This is a central consideration of the present discussion.

2. Bi-configuration strain tensor

Using standard notation and conventions, (see, for example [5]), referential Cartesian coor-
dinates denoted Xα(α = 1, 2, 3) and spatial Cartesian coordinates denoted xi(i = 1, 2, 3)
are set up in space by adjoining to the respective origins O and o the similar orthonormal
curvilinear bases, E = (E1,E2,E3) and e = (e1, e2, e3).

The definition of any measure of finite strain must centre on the fundamental kinematic
tensors underlying the local analysis of deformation and motion. These fundamental kinematic
tensors are the deformation gradient F and its inverse defined by

F = Grad x, F−1 = grad X, (2.1)

and having, for example, the mixed component form

F = Fpµep ⊗ Eµ, F iα = xi ,α
F−1 = (F−1)µpEµ ⊗ ep, (F−1)αi = Xα,i ,

(2.2)

where ,r (r = α, i) denotes covariant differentiation. Since F is invertible, the polar decom-
position theorem can be applied to write

F = RU, F = VR, (2.3)

where R is the rotation tensor. The positive-definite, symmetric right and left stretch tensors
U and V have the spectral representation

U =
3∑
r=1

urpr ⊗ pr , V =
3∑
r=1

vrqr ⊗ qr , V = RURT, (2.4)

where the ui, vi are the eigenvalues of U and V: the orthonormal triplets pi , q i define the
principal axes of U at X and V at x, respectively. Substituting in the third equation of (2.4)
for the left and right stretch tensors yields
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V =
3∑
r=1

vrqr ⊗ qr =
3∑
r=1

ur{(Rpr)⊗ pr}(pr ⊗ qr) =
3∑
r=1

urqr ⊗ qr , (2.5)

which establishes that the left and right stretch tensors have a common set of eigenvalues
referred to as the principal stretch ratios

λi = ui = vi (i = 1, 2, 3). (2.6)

Entering the expressions for the right and left stretch tensor given in the first and second equa-
tions in (2.4) into the first and second equations in (2.3), respectively, gives for the deformation
gradient tensor the expression

F =
3∑
r=1

λrqr ⊗ pr , λi = q i · (Fpi) (i = 1, 2, 3), J = det F = λ1λ2λ3 > 0. (2.7)

In deriving (2.7), use has been made of (2.6) to replace the common eigenvalues of the stretch
tensors by the principal stretch ratios.

The left and right Cauchy-Green deformation tensors B and C are related to the stretch
tensors by the expressions

B = FFT = V2, C = FTF = U2, B = RCRT, (2.8)

where the superscript T denotes the matrix transpose. Using (2.4), (2.6) and (2.8), it follows
that B and C have the spectral representations

B =
3∑
r=1

λ2
rqr ⊗ qr , C =

3∑
r=1

λ2
rpr ⊗ pr . (2.9)

The squares of the principal stretches are the common eigenvalues of B and C.
For isotropic, perfectly elastic materials, the reference configuration Br of the material

body B is the undistorted state to which the material returns when relieved of all stress. In the
undistorted state, that is, in the stress free natural state of B, any measure of finite strain must
reduce to the zero tensor.

Consider the symmetric second-order tensors

E = 1
4(B − B−1) = 1

4

[
FFT − (F−1)TF−1

]
,

J = 1
4 (C − C−1) = 1

4

[
FTF − F−1(F−1)T

]
, E = RJRT,

(2.10)

that are rational functions of both F and its inverse. For a rigid-body motion of B, the Cauchy-
Green deformation tensors reduce to the identity tensor and E = O, J = O. Entering the
spectral representations of the left and right Cauchy-Green deformation tensors given in (2.9)
into (2.10), we obtain the spectral representation

E =
3∑
r=1

εrqr ⊗ qr , J =
3∑
r=1

εrpr ⊗ pr , (2.11)

where

εi = (λ4
i − 1)

4λ2
i

(i = 1, 2, 3) (2.12)
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are the common eigenvalues of E and J.
The multiplicative decompositions of the strain tensors in terms of the right and left stretch

tensors U and V illustrate the physical significance of E and J. From (2.8) and (2.10),

E = �P, J = �N, (2.13)

where

� = 1
2 (V + V−1) P = 1

2 (V − V−1), � = 1
2 (U + U−1) N = 1

2 (U − U−1). (2.14)

In the undistorted state, P = O and N = O. Because calculation of the components of U,V
and R from F may in special cases involve irrational functions, the finite strain tensors P and N
are not suitable for the formulation of constitutive equations. The positive-definite, symmetric
tensors � and � render the tensors E and J in a form that can be used for this purpose.
Hence, although P and N are the fundamental measures of strain, the term ‘finite strain’ will
be reserved for E and J. The common eigenvalues εi of E and J are referred to as the principal
finite strains. Equations (2.4) and (2.6) can be used to rearrange (2.14) into

κi = q i · (�q i ) = pi · (�pi ) = λ2
i + 1

2λi
,ξi = qi · (Pq i) = pi · (Npi) = λ2

i − 1

2λi
, (2.15)

where the principal strains ξi are the common eigenvalues of P and N; κi are the common
eigenvalues of � and �.

Consider a material curve Cr in the reference configuration Br of a material body B, and a
material curve Ct in the current configuration Bt of B. A material line element in the reference
configuration Br of B has length dS(i) and the direction of a unit vector Li tangent to Cr at X.

This segment is carried into the elementary arc length ds(i) in the current configuration Bt of
B, and is in the direction of a unit vector li tangent to Ct at x. Let the elementary arc lengths
dS(i) and ds(i) be represented by the vectors dX(i) and dx(i)(i = 1,2,3), respectively. These
vectors are related through the deformation gradient tensor evaluated at X in the reference
configuration Br of B and at x in the current configuration Bt of B so that

dx(i) = FdX(i) (i = 1, 2, 3), (2.16)

in accordance with the first equation in (2.1). Substituting in (2.16) for dX(i) = LidS(i) and
dx(i) = lids(i), and since Li and li each have unit norm, it follows with reference to the
second equation in (2.7), that

ds(i)
dS(i)

= li · (FLi) = λi (i = 1, 2, 3). (2.17)

From (2.17)

λqλr = ds(q)
dS(q)

ds(r)
dS(r)

= da(p)
dA(p)

= J

λp
(p, q, r = 1,2,3,p 	= q 	= r), (2.18)

where use has been made of the third equation in (2.7) in the form J = λpλqλr , and where

dA(p) = dS(q)dS(r), da(p) = ds(q)ds(r), (2.19)

are elements of area in the referential and spatial configurations of B, respectively. Equations
(2.17) and (2.18) give for the principal stretch ratios the expressions
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λi = ds(i)
dS(i)

= J dA(i)
da(i)

(i = 1, 2, 3). (2.20)

The expression for the principal finite strains εi given in (2.12) can be recast into the form

εi = κi
(
ds(i)

)2 − (
dS(i)

)2

2 dσ(i)
= κi

(
JdA(i) + da(i)

)
2J dψ(i)

[
�A(i)

dψ(i)

]
(i = 1,2,3), (2.21)

where use has been made of (2.15) and (2.20), and

dσ(i) = ds(i)dS(i), dψ(i) = √
dA(i)da(i), �A(i)=JdA(i) − da(i) (i = 1,2,3). (2.22)

The definition of dσ(i) given in the first equation in (2.22) does not admit of a direct physical
interpretation. However, dσ(i) and quantities like it will be referred to, solely in the context
of physical dimensions, as an element of bi-configuration area, thus emphasizing that dσ(i) is
defined jointly on the referential and spatial configurations of B.

Equation (2.21) identifies the physically significant quantities of the finite strain E. These
are the change in area �A(i), which is fundamental to the concept of finite strain, and the ele-
ment of area dψ(i) which, since it is defined jointly on the referential and spatial configurations
of B, will be referred to as an element of bi-configuration area. With regard to the definition
of the corresponding stress tensor, �A(i) is the current value of the change in area. Any strain
tensor for which the current value of the change in area acts across a surface defined jointly on
the referential and spatial configurations of B will be referred to as a bi-configuration strain
tensor.

In the context of the third equation in (2.10), and equations (2.21) and (2.22), E and J will
be referred to as the left and right bi-configuration strain tensors, respectively.

When the displacements and displacement gradient components are small compared to
unity, the same reference axes can be used for x and X to give the displacement vector u =
x − X = u(X). This approximation allows the introduction of the tensor of displacement
gradients, H = F − I , which can be rearranged and entered into the first equation of (2.8)
and the inverse of B, to give, to a first order in H, the small strain approximations

B ≈ I + 2ẽ = B̃, B−1 ≈ I − 2ẽ = B̃−1, ẽ = 1
2 (F + FT)− I, (2.23)

where ẽ is the classical measure of infinitesimal strain, that is Cauchy’s strain measure. En-
tering the small strain approximations for B and B−1 given in (2.23) into the first equation in
(2.10) gives for the left bi-configuration strain tensor the small strain approximation

E ≈ 1
4(B̃ − B̃−1) = ẽ. (2.24)

Similarly, the small-strain approximation of the right bi-configuration strain tensor is the
Cauchy strain tensor.

3. Bi-configuration stress tensor

The symmetric, second-order Cauchy stress tensor T defined on the spatial configurations of
B, has the spectral representation

T =
3∑
r=1

trqr ⊗ qr , (3.1)
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where the ti are the eigenvalues of T. The principal axes of T at x are defined by the ortho-
normal triplet q i . Let f be the traction in the current configuration Bt of B. For the Cauchy
stress tensor,

df = TTnda. (3.2)

Equation (3.2) establishes that the traction is acting across a material surface element with area
da and outward unit normal vector n in the current configuration Bt of B. This is in contrast to
the left bi-configuration strain tensor E which is seen from (2.21) to be defined in such a way
that the current value of the change in area �A(i) acts across an element of bi-configuration
area dψ(i) which is defined jointly on the referential and spatial configurations of B.

From (2.20), the stretch ratios λq and λr can be expressed in the form

λq = ds(q)
dS(q)

ds(r)
ds(r)

= da(p)
dψ(p)

, λr = ds(r)
dS(r)

ds(q)
ds(q)

= da(p)
d (p)

, (3.3)

where da(p) is defined in the second equation in (2.19), and

dψ(p) = dS(q)ds(r), d (p) = ds(q)dS(r), (3.4)

are two elements of bi-configuration area.
A new measure of stress can be defined using (3.3). In this context, (3.3) can be used in

two ways to give the expressions

π1 = t1da(1)
d (1)

= λ3t1, π2 = t2da(2)
d (2)

=  1t2, π3 = t3da(3)
d (3)

= λ2t3, (3.5)

and

ζ1 = t1da(1)
dψ(1)

= λ2t1, ζ2 = t2da(2)
dψ(2)

= λ3t2, ζ3 = t3da(3)
dψ(3)

= λ1t3. (3.6)

However, there is no criterion for selecting preferentially πi or ζi. This is because πi , ζi do not
admit a direct physical interpretation. This ambiguity with respect to the physical significance
of πi and ζi can be resolved by forming a set of composite eigenvalues si = si(πi , ζi) (i =
1,2,3). A linear combination of πi and ζi to form the composite eigenvalues si would centre on
the use of the right and left stretch tensors U and V. However, while the polar decomposition
theorem in the form of (2.3) is central to the proof of general theorems, calculation of the
components of U,V and R from F in special cases may involve irrational functions. The πi
and ζi can be combined in terms of the squares of the principal stretches, as

si =
√

1
2 (π

2
i + ζ 2

i ) = a1/2
i ti , (3.7)

where

ai = 1
2(IB − λ2

i ) (u = 1, 2, 3), IB = λ2
1 + λ2

2 + λ2
3. (3.8)

Since both B and T are symmetric second-order tensors, si defined in (3.7) can be taken to
be the eigenvalues of the symmetric second-order stress tensor

S = �T. (3.9)

where
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� = A1/2, A = 1
2 (IBI − B). (3.10)

With the use of the first equation in (2.9), the positive definite symmetric kinematic tensor �

has the spectral representation

� =
3∑
r=1

φrqr ⊗ qr . (3.11)

The coefficients

φi =
√

1
2 (IB − λ2

i )=a1/2
i (i = 1, 2, 3) (3.12)

are the eigenvalues of �. The expression for S given in (3.9) is the counterpart of the expres-
sion for E given in the first equation of (2.13).

Entering the representations of T and � from (3.1) and (3.11) into (3.9) gives for S the
spectral representation

S =
3∑
r=1

srqr ⊗ qr , (3.13)

where

si = φiti =
√
(IBλi − λ3

i )

2J

[
tida(i)
dψ(i)

]
(i = 1, 2, 3) (3.14)

are the eigenvalues of S. In deriving (3.14) use has been made of (2.20) and (2.22). The
expression for si given in (3.14) is the counterpart of the expression for the εi given in (2.21).

Equations (2.10) - (2.12) imply that, in the context of formulating constitutive equations,

S = R�RT. (3.15)

This expression for S is the counterpart of the expression for E given in the third equation of
(2.10). The stress tensor � is defined on the reference configuration Br of B. Equations (3.9),
(3.10) and (3.15) yield

� = J−1�̃T̃, �̃ =
√

1
2 (ICC2 − C3), T̃ = J F−1T(F−1)T, (3.16)

where T̃ is the second Piola-Kirchhoff stress tensor, (see, for example [3, pp. 71–73]). The
stress tensors S and � have in common the set of eigenvalues si .

In the context of (3.15), S and � will be referred to as the left and right bi-configuration
stress tensors, respectively.

For sufficiently small strains, B ≈ I, and hence, from (3.10), � ≈ I, which can be entered
into (3.9) to give

lim
E→ẽ

S = T. (3.17)

This establishes that, for sufficiently small strains, the left bi-configuration stress tensor ap-
proximates the Cauchy stress tensor.
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4. Constitutive equation

The constitutive state variables characterising the finite strain of an isotropic elastic mate-
rial are the symmetric, second-order left bi-configuration stress tensor S and the symmetric,
second-order left bi-configuration strain tensor E. Central to the formulation of the constitutive
stress-finite strain relation for a class of isotropic perfectly elastic solids is the condition that,
for sufficiently small strains, the proposed constitutive equation must reduce to the stress-
strain relationship of the classical, infinitesimal, linearized theory of elasticity, that is, the
generalized Hooke’s law.

4.1. BASIC CONSTITUTIVE ASSUMPTION

The basic constitutive assumption connects the stress tensor S to E by the constitutive equation

S = λ(trE)I + 2GE, (4.1)

where the material response coefficients λ andG are scalar functions of the principal invariants
IE, IIE, IIIE of E.

Substituting the small strain approximations for E and S given in (2.24) and (3.17) in (4.1),
we have

T = λ0(trẽ)I + 2G0ẽ, (4.2)

where

λ0 = lim
E→ẽ

λ = const., G0 = lim
E→ẽ

G = const. (4.3)

Equation (4.2) is the stress-strain relationship of the classical, infinitesimal, linearized the-
ory of elasticity, and hence it follows that the constitutive equation (4.1) satisfies the condition
that for sufficiently small strains it must reduce to the generalized Hooke’s law. Since the
constitutive equation (4.1) is effectively a finite strain form of generalized Hooke’s law, λ and
G will be referred to as the generalised Lamé coefficients.

For incompressible materials, the stress must be replaced by the extra stress Se = S + P I,
where the isotropic stress P is kinematically indeterminate. Hence, for an incompressible
isotropic elastic material, the constitutive equation (4.1) is replaced by

S = −P̄ I + 2GE (4.4)

it being noted that the spherical term λ(trE)I has been absorbed into the constraint stress −P I.
Since det� 	= 0, the symmetric kinematic tensor � defined in (3.10) has an inverse and

the constitutive equation (4.1) can be expressed in the form

T = λ(trE)�−1 + 2G�−1E. (4.5)

4.2. THE LODE RELATION

Using a prime to denote the deviatoric part, both (4.1) and (4.4) can be expressed in the form

S′ = 2GE′. (4.6)

It follows from the first equation in (2.11) that the deviator of E has the spectral representation
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E′ =
3∑
r=1

εr
′qr ⊗ qr , (4.7)

where ε′i (i = 1, 2, 3) are the eigenvalues of E′. In (4.7), the orthonormal triplet q i specifies
the principal axes at x common to both E and its deviator. Entering the spectral representation
of E′ given in (4.7) into (4.6) we obtain the relation

si
′ = 2Gεi

′ (i = 1, 2, 3), (4.8)

and establishes that S′ has the spectral representation

S′ =
3∑
r=1

sr
′qr ⊗ qr , (4.9)

where s′i(i = 1, 2, 3) are the eigenvalues of S′; the principal axes at x common to S′ and E′
are defined by the orthonormal triplet q i . It follows from (4.7) and (4.9) that S′ is coaxial with
E′.

Associated with any symmetric second-order tensor is the Lode [4] parameter facilitating
the formulation of the predictions of a proposed constitutive theory. The Lode parameters for
S′ and E′ are

µ = 3s1 ′

s3′ − s2′ , ν = 3ε1
′

ε3
′ − ε2

′ . (4.10)

With regard to (4.6) and (4.8), µ will be referred to as the Lode stress parameter, and ν as
the Lode strain parameter.

The expression for si ′ can be entered from (4.8) into the first equation of (4.10) to give

µ = ν, (4.11)

where use has been made of the second equation in (4.10). The equality given in (4.11) will
be referred to as the ‘Lode relation’.

4.3. NONLINEAR STRESS-STRAIN RESPONSE

The nonlinear stress-strain response is described by the generalised Lamé coefficientG through
its dependence on the principal invariants IE, IIE, IIIE of E. It follows from (4.6) that

S2
′ = 4G2E2

′, (4.12)

where

S2
′ = 1

2 trS′2= 1
12(3+µ2)(s′3 − s′2)2, E2

′ = 1
2 trE′2 = 1

12(3+ν2)(ε′3 − ε′2)2 (4.13)

are the second principal moments of S′ and E′, respectively.
Equation (4.12) is central to the concept of a generalised loading-response relation formu-

lated in terms of an effective stress

' = √
3S2

′ = 1
2(s3

′ − s2′)
√

3 + µ2 = 3
2s1

′
√

3 + µ2

µ2
, (4.14)

and effective strain
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Figure 1. Initial (dashed lines) and deformed (solid lines) configurations of a material body in simple shear.

ε = 2
3

√
3E2

′ = 1
3(ε3

′ − ε2
′)
√

3 + ν2 = ε1
′
√

3 + ν2

ν2
. (4.15)

Entering the relation for s′1 from (4.8) into (4.14) and using the Lode relation we establish
the generalised loading-response relation

' = 3Gε, (4.16)

where use has been made of (4.15).

5. Predictions from constitutive theory

Central to the derivation of the constitutive equation (4.1) is the question as to whether it yields
the general predictions identified in Section 1, as well as quantitative predictions that can be
subjected to the test of experiment.

5.1. POYNTING EFFECT

Consider an initially cuboid-shaped material body B aligned in the reference configuration Br

with the Cartesian coordinate axes (X1, X2, X3). Let the Cartesian coordinates (x1, x2, x3) be
the spatial coordinates in the deformed configuration. A simple shear deformation of amount
γ is given by

x1 = X1, x2 = X2 + γX3, x3 = X3. (5.1)

The effect of this homogeneous deformation is shown in Figure 1, and is seen to transform
B to a parallelepiped having two of its faces orthogonal to the directions represented by the
unit vectors l and n. The direction of shear, defined by a unit vector m, forms with l and n an
orthonormal set. From (2.2) and (5.1)

F = l ⊗ l + m ⊗ m + n ⊗ n + γm ⊗ n. (5.2)

From (5.2), detF = 1, and the deformation is isochoric. The inverse of F is the adjugate of FT,
and hence (5.2) gives

F−1 = l ⊗ l + m ⊗ m + n ⊗ n − γm ⊗ n. (5.3)

Substituting in (2.10) for F and its inverse from (5.2) and (5.3), we obtain for the left finite
strain tensor the expression
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E = 1
4γ

2m ⊗ m − 1
4γ

2n ⊗ n + 1
2γ (m ⊗ n + n ⊗ m). (5.4)

Entering the form for E given in (5.4) into the constitutive equation (4.1) we have

S = 1
2γ

2Gm ⊗ m − 1
2γ

2Gn ⊗ n + γG (m ⊗ n + n ⊗ m), (5.5)

which establishes that the only non-zero components of stress are the normal components

S(m) = m · (Sm) = 1
2γ

2G, S(n) = n · (Sn) = − 1
2γ

2G, (5.6)

and the components of shear stress

S(m n) = m · (Sn) = γG, S(n m) = n · (Sm) = γG. (5.7)

From (5.6) and (5.7),

S(m) − S(n) = γ S(mn), (5.8)

which is independent of the generalised Lamé coefficient and consequently referred to as a
universal relation.

Substitution in (3.10) for F from (5.2) gives for A the expression

A = (1+ 1
2γ

2)l ⊗ l + m ⊗ m + (1+ 1
2γ

2)n ⊗ n − 1
2γ (m ⊗ n + n ⊗ m), (5.9)

whose derivation relies on the first equation of (2.8). Since � and T commute, it follows from
(3.9), (3.10), and (5.5) that

S2 = (1+ 1
4γ

2)γ 2G2m ⊗ m + (1+ 1
4γ

2)γ 2G2n ⊗ n = AT2. (5.10)

From (5.10) then

T2 = A−1S2= (1+ 1
2γ

2)γ 2G2m ⊗ m + γ 2G2n ⊗ n + 1
2γ

3G2(m ⊗ n + n ⊗ m), (5.11)

where the inverse of A has been obtained from (5.9).
If the same notation for the components of T is used, it follows from entering the form

for E given in (5.4) into the constitutive equation (4.5) that the only non-zero components of
the Cauchy stress are the normal components T(m) , T(n) and the components of shear stress
T(m n) = T(n m). Hence, the only non-zero components of T2 follow from (5.11) in the form

(T 2)(m) = (T(m))2 + (T(m,n))2 = m · (T2m) = (1+ 1
2γ

2)γ 2G, (5.12)

(T 2)(n) = (T(n))2 + (T(mn))
2 = n · (T2n) = γ 2G, (5.13)

(T 2)(m n) = T(m n)(T(m) + T(n)) = m · (T2n) = 1
2γ

3G. (5.14)

From (5.12) - (5.14)

(T 2)(m) − (T 2)(n)

(T 2)(m n)

= T(m) − T(n)
T(mn)

= γ . (5.15)
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This result is of physical significance because it is independent of the generalised Lamé co-
efficient G, and (5.15) is therefore a universal relation. Equation (5.15) shows that the shear
stress T(m n) arises directly from the normal stress-difference T(m) − T(n). And since it is a
universal relation, it follows that the shear stress is produced in exactly the same way in every
isotropic elastic solid.

Moreover, it is evident from (5.15) that the normal stresses T(m) and T(n) are unequal, a
property of the material referred to as the Poynting effect.

The Cauchy stress - Cauchy-Green deformation equation also yields (5.15), in accord with
the Poynting effect being regarded as a general prediction which any theoretically admissable
constitutive theory must predict (see, for example [6, pp. 181–184]).

5.2. BIAXIAL STRETCHING OF A THIN SHEET

Consider a cuboid-shaped body B in the form of a thin sheet regarded as an incompressible,
perfectly elastic solid, for which only isochoric deformations are possible;

J = detF = λ1λ2λ3 = 1. (5.16)

The material is taken to be isotropic relative to its undeformed and unstressed state, corre-
sponding to the natural configuration.

The initially square body has parallel edges aligned with the Cartesian coordinate system,
(X1, X2, X3), which are the referential coordinates of B in the natural state. Assume a pure
homogeneous deformation such that

x1 = λ1X
1, x2 = λ2X

2, x3 = λ3X
3, (5.17)

where the Cartesian coordinates (x1, x2, x3) are the spatial coordinates in the deformed con-
figuration. The condition of incompressibility in the form of (5.16) implies that only two of
the principal stretches are independently assignable: these will be taken to be λ2 and λ3.

With the major surfaces free from applied stress, the only non-zero components of the left
bi-configuration stress are taken to be the normal components

S22 = s2, S33 = s3 ≥ 0, (S11 = s1 = 0) (5.18)

for all λ3 ≥ 1. With s1 = 0 for all s3 ≥ 0, (this condition is used in Section 6 where
predictions are compared with observed material response), expressions for the non-zero
components of stress follow from (3.7) and (3.12) as

s2 =
√

1 + λ2
2λ

4
3

2λ2
2λ

2
3

t2, s3 =
√

1 + λ4
2λ

2
3

2λ2
2λ

2
3

t3. (5.19)

In deriving (5.19), we have made use of (5.16).
With s1 = 0 for all s3 ≥ 0, it follows from (4.14) and (4.15) that

' =
√
(s3 − s2)2 + s2s3, ε = 1√

3

√
(ε3 − ε2)

2 + 1
3(2ε1 − ε2 − ε3)

2. (5.20)

Some general properties of the stress-finite strain behaviour of materials can be deduced
in the context of four simple modes of deformation. Each of these modes of deformation is
identified by a value of the Lode parameter. These are: µ( = ν) = 0, − 1,−3, − ∞. With
s1 = 0 for all s3 ≥ 0, the expressions for µ and ν given in (4.10) can be expressed in the
form
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µ = −
(

1 + 2s2
s3 − s2

)
, ν = −

[
1 + 2(1 + λ2

3)(λ
4
2λ

2
3 − 1)

(1 + λ2
2λ

2
3)(λ

2
3 − λ2

2)

]
. (5.21)

In deriving (5.21), we have used (5.16).
From (5.21) it follows with use of (5.16) that
(i) if µ = ν = 0, then

λ1 = 1, λ3 = λ−1
2 ≥ 1, s1 = 0, s3 = −s2 ≥ 0. (5.22)

The conditions shown in (5.22) characterise the material response in a pure shear mode of
deformation. Since a thin sheet can only be subjected to tensile edge tractions, condition s2 <
0 can not be realised experimentally.

(ii) if µ = ν = −1, then

λ1 = λ2 = 1/
√
λ3, s1 = 0, s2 = 0, s3 ≥ 0. (5.23)

The conditions shown in (5.23) characterise the material response in simple uniaxial exten-
sion, and do not provide a specific prediction regarding the material’s behaviour.

(iii) if µ = ν = −3, then

λ2 = 1, λ3 = λ−1
1 ≥ 1, s1 = 0, s3 = 2s2 ≥ 0. (5.24)

The conditions given in the first and second equations of (5.24) for the principal stretches are
formally identical to those given in the first and second equations of (5.22), (differing only in
the disposition of the indices), and hence these two simple modes of deformation are formally
equivalent. Equation (5.24) characterises the material’s response in the pure shear mode of
deformation described by Rivlin and Saunders [7] and by Jones and Treloar [8].

(iv) if µ = ν = −∞, then

λ2 = λ3 = 1/
√
λ1, s1 = 0, s2 = s3 ≥ 0. (5.25)

Equation (5.25) characterises the material’s response in simple equi-biaxial extension. Since
any theoretically admissible stress-strain relation for isotropic, perfectly elastic materials would
be expected to yield this prediction, the equi-biaxial prediction formulated in (5.25) is not
significant with respect to comparing constitutive theory with the observed behaviour of a
material.

The condition formulated in (5.24) gives a specific prediction which can be subjected to
the test of experiment. A further prediction is that the individual stress-finite strain relations
obtained from biaxial stretching, that is, the (' , ε) curves obtained from (4.14) and (4.15) and
characterised by variable µ(=ν), together with the individual (' , ε) relations associated with
µ( = ν) = −3,−∞ should compound together by way of (4.16) to give a single, generalised,
stress-finite strain relation.

6. Observed material response

Of the available experimental studies, there would appear to be only three sets of measure-
ments given in sufficient detail for subjecting the stress-strain predictions from constitutive
theory to the test of experiment. These are the studies of Jones and Treloar [8], James et al.
[9], and Rivlin and Saunders [7].
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Figure 2. Variation of s3 with s2: ◦, from Table 2 of [8], �, from Table 2 of [9], �, from Table 1 of [7], ♦ , from
Table 2 of [7].

6.1. EXPERIMENTAL METHOD

The experimental studies are concerned with various tests in pure homogeneous strain. The
stretch λ2( ≥ 1) was first adjusted to a fixed extension, and then the tensile stress t3( ≥ 0) was
incrementally increased, the tensile stress t2( ≥ 0) being concomitantly adjusted to maintain
the fixed stretch λ2. In the studies of Jones and Treloar [8], the numerical values of t2 , t3 , λ2

and λ3 have been obtained from Table 2 of Haines and Wilson [10].
These three sets of measurements use a cuboid-shaped specimen in the form of a thin

rubber sheet regarded as an incompressible material for which only isochoric deformations
are possible. For all three studies, the material used was a sulphur-cured, natural rubber vul-
canizate (smoked sheet). The three materials differ slightly in the mix employed. The material
is taken to be isotropic relative to its undeformed and unstressed state, which is the natural
configuration. The stress-strain relations for these experimental studies have been considered
in Section 5. The present discussion is restricted to measurements made on a single specimen.
The uniaxial extension measurements of Jones and Treloar [8] are not discussed because the
specimen is the same as that used in the biaxial measurements. The unstressed edges may
contribute an edge effect arising from the presence of the holes along these two edges, which
are required for the biaxial measurements but are not in use for the uniaxial measurements.

6.2. PURE SHEAR PREDICTION

The conditions for pure shear characterised by µ = ν = −3 are given in Section 5(iii). Using
(5.19), we show the variation of s3 with s2 in Figure 2. The origin of the experimental (s3, s2)
relation for the experimental studies of James et al. [9], and Rivlin and Saunders [7] has been
shifted so as to give an interval of 0·5 of a unit of s3 between the two (s3, s2) curves. For the
experimental studies of Rivlin and Saunders [7], values of t2 , t3 and λ3, for λ2 = 1 have been
obtained from their Tables 1 and 2 using standard methods of extrapolation. For all three sets
of measurements,

s3 = 2As2 + B. (6.1)
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Table 1. Average values of Lode’s
bi-configuration stress parameter

A B −µ
[8] 0·987 0·004 3·019 ± 0·048

[9] 0·998 0·013 2·917 ± 0·127

[7] 1·027 −0·005 2·928 ± 0·060

Figure 3. Variation of the effective stress' with the effective strain ε using the results given in Table 2 of [8], λ2:
◦, 1·0 ; ♦ , 1·502; �, 1·984 ; �, 2·295; �, 2·623

The prediction s3 = 2 s2 given in (5.24) requires A = 1,B = 0 which compare well with
the experimentally determined values of A and B given in Table 1.

Entering the measured values of s2 and s3 into the first equation in (4.10) gives the average
values of µ shown in Table 1. These values of µ are to be compared with the theoretical
prediction, µ = −3. The last two pairs of values of S3 corresponding to λ2 = 3·0 , 3·5 of
the experimental studies of James et al. [9] have been omitted since for these values of λ2 the
material is no longer fully isotropic, (see Section 7).

It is evident from Figure 2 and Table 1 that all three experimental (s3, s2) relations are in
good agreement with the theoretical prediction represented by the full straight lines.

6.3. GENERALISED STRESS-STRAIN RELATION

Values of the effective stress ' and the effective strain ε for the three sets of measurements
have been evaluated from (5.20). The experimental (' , ε) curves are shown in Figure 3 for
the results given by Jones and Treloar [8]. The origin of each (' , ε) curve corresponding to
λ2 = 2·295 , 1·984 , 1·502 , 1, has been shifted so as to give equal intervals of one unit of '
between the individual (' , ε), curves. The five full line curves shown in Figure 3 are identical.

Shown in Figure 4 is the variation of φ with ε for the experimental studies of James et al.
[9]. The origin of each (' , ε) curve corresponding to λ2 = 1·3, 1·5, 1·7, 2·0, has been shifted
so as to give equal intervals of one unit of φ between the individual (' , ε), curves. The five
full line curves shown in Figure 4 are identical.

Using the experimental results given in Table 1 of [7], the four (' , ε) curves for IB =
5 , 7 , 9 , 11, are shown in Figure 5. For this experimental study, the results given by Rivlin
and Saunders in their Table 1 are such that the (λ2 ,t2) curve increases to a maximum value,
(λ∗

2, t
∗
2 ), and the (λ3 ,t3) curve decreases to a minimum observed value, (λ∗

3,t
∗
3 ). These two

curves approach each other in such a way that each curve appears to be the continuation of the



132 E.W. Billington

Figure 4. Variation of the effective stress ' with the effective strain ε, using the results given in Table 2 of [9]:
λ2; ◦, 1·3; ♦, 1·5; �, 1·7; �, 2·0 ; •, 2·5.

Figure 5. Variation of the effective stress φ with the effective strain ε using the results given in Table 1 of [7], IB :
�, 5; �, 7; ◦, 9; �, 11; �, λ2 = λ3; ♦, λ2 = 1.

other, so that there is no well-defined intersection of the curves at (λ2 = λ3 ,t2 = t3). However,
the differences (λ∗

3 − λ∗
2), (t

∗
3 − t∗2 ) are sufficiently small for the equibiaxial extension λE and

the equibiaxial Cauchy stress tE to be approximated with

λE = 1
2 (λ

∗
2 + λ∗

3), tE = 1
2(t

∗
2 + t∗3 ). (6.2)

In the case of the results given in Table 2 of [7], the two relevant sets of (λ2 , t2), (λ3 , t3)

curves do have a well-defined intersection, giving three further values of λE , tE. The (' , ε)
curve for these equibiaxial results is shown in Figure 5 using blocked circles; the origin for
this curve has been shifted by one unit of '. Also shown in Figure 5 are the results for the
pure shear measurements obtained by extrapolation of the (λ2 , t2), (λ3 , t3) curves in the way
described above. The (' , ε) curve for pure shear has been shifted by one unit of '. The two
full line curves shown in Figure 5 are identical.

It is evident from Figures 3, 4 and 5 that, within the limits of experimental accuracy, the
individual (' , ε) curves for each of the three sets of measurements compound together to
give three generalised experimental, bi-configuration stress-finite strain curves.

All available results for the equi-biaxial mode of deformation are in good accord with the
generalised experimental, bi-configuration stress-finite strain curves.

6.4. GENERALISED LAMÉ COEFFICIENT G

The generalised stress-strain relation of (4.16) involves a single material coefficient, that is,
the generalised Lamé coefficient G. Taking the generalised Lamé coefficient G to be of the
form

G = Ga + (G0 −Ga)
tanh(ηε)

ηε
, (6.3)
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Table 2. Values of the parameters appearing in

the mechanical equation of state

φa Ga η G0

(M Pa) (M Pa) (M Pa)

[8] 0·730 0·208 0·548 0·342

[9] 0·723 0·221 0·605 0·367

[7] 0·700 0·194 0·596 0·333

Figure 6. Variation of the effective stress ' with the
effective strain ε, using the results given in Table 2 of
[9]: λ2; �, 3·0 ; ◦, 3·5.

and entering this form for G into (4.16) leads to the relation

' = φatanh(ηε)+ 3Gaε = 3Gε, (6.4)

where

G0 = lim
ε→0

G, φa = 3
(G0 −Ga)

η
(6.5)

where G0 ,Ga , φa , η are constants characteristic of material properties.
Using the values of Ga , φa , η given in Table 2, the five identical full line curves shown

in Figure 3 have been calculated from (6.4). Similarly, using the values of Ga , φa , η given
in Table 2, the five full line curves shown in Figure 4, and the two full line curves shown in
Figure 5, have been calculated from (6.4).

The discussion given in Sections 4, 5 and 6 has centred on the use of the proposed consti-
tutive stress-finite strain relation formulated in the spatial description. However, since E and J
have in common the principal strains εi , and S and � have in common the principal stresses si ,
it follows from (4.14) and (4.15) that both the effective stress ' and the effective strain ε are
independent of whether the constitutive equation is formulated in the spatial description or in
the referential description. This leads by way of (4.16) to the conclusion that the generalised
Lamé coefficient G is a specific property characteristic of a material.

7. Discussion

The observation that the individual stress-strain relations obtained from biaxial tests com-
pound together to give a single generalised bi-configuration stress-finite strain curve over a
wide range of finite strain is taken as evidence in support of the assumption that the materials
can be regarded as isotropic over a wide range of finite strain. The individual (' , ε) curves
are shown in Figure 6 for the biaxial measurements given in [9] for λ2 = 3·0, 3·5. In Figure 6,
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the full line (' , ε) curve has been calculated from (6.4) using the values of Ga , φa , η given
in Table 2.

It is seen from Figure 6 that there is a range of finite strain over which the individual (' , ε)
curves fail to correlate with the full line curve calculated from (6.4). With further increase in
effective strain, the individual (' , ε) curves again become indistinguishable from the full-
line curve. The results shown in Figure 6 identify a particular value of the effective strain at
which the (' , ε) curves first deviate from the full line (' , ε) curve. The deviation of the
experimental curve from the full line curve is tentatively attributed to the material becoming
progressively anisotropic with increasing strain. As the effective strain is increased towards the
equibiaxial condition, λ2 = λ3, the individual (',ε) curves shown in Figure 6 again correlate
with the original generalised stress-strain curve identified as the full line curve, which is taken
to imply that the material progressively regains the initial state of isotropy.

The proposed constitutive equation predicts the Poynting effect, in accord with the condi-
tion that any theoretically admissible constitutive equation must predict this effect. Moreover,
the proposed constitutive equation predicts stress equality for the equi-biaxial extension mode
of deformation, the prediction being accurately confirmed by the available results of ex-
periment. For sufficiently small strains, the constitutive equation reduces to the stress-strain
relationship of the classical infinitesimal linearized theory of elasticity, that is, the generalised
Hooke’s law. The specific prediction associated with the pure shear mode of deformation is
shown to be accurately confirmed by the available results of experiment. The high degree of
accuracy of the correlation between the specific (quantitative) prediction and the results of ex-
periment for the pure shear mode of deformation confirms the technical utility of the proposed
new measure of stress, that is, the bi-configuration stress tensor. The specific prediction that
the individual stress-finite strain relations obtained from bi-axial stretching should compound
together to give a single, generalised, characteristic stress-finite strain relation is shown to be
accurately confirmed by the available results of experiment. The single, generalised, charac-
teristic stress-finite strain relation establishes the generalised Lamé coefficients as specific,
fundamental, quantitative properties of a material.
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